Alaska Department of Transportation & Public Facilities Western States Regional In-Place Recycling Conference, Sept. 2012 in Ontario, CA

Newton Bingham PE, Regional Materials Engineer CR Bruce Brunette, PE, Regional Materials Engineer SE

# **Transportation Demographics**





## **Alaska's Experience in FDR**

- <u>Reclaim</u> existing pavement (HMA) and crushed aggregate base (CABC)
- <u>Reclaim</u> HMA + CABC & <u>Stabilize</u> With;
  - Portland Cement
  - Foamed Asphalt
  - Emulsion
  - Chemical Stabilization with Fiber Reinforcing



#### **Roads Selected for FDR and Base Stabilization**





## **Selection Process Elements**

- Maximize Use of Local & Existing Materials
- Life Cycle Cost and Initial Cost To Build Structural Section
- Design Vehicle
  - ESALS for Highways Legal Loads
  - Design Aircraft e.g. Boeing 737-400



## **Additive Selection**

- State has a <u>stabilized base policy</u> due to thaw weakening of unbound bases that require spring weight restrictions
- Mechanistic design considerations of higher M<sub>R</sub> for additives that bind RAP & CABC
- Aircraft over 100,000 lbs require stabilized base due to wheel loadings



## **Additive Selection Factors**

- Cost effectiveness allowing use of local materials in embankments;
  - silts
  - material with high moisture contents
- Aggregate Size –Pit Run NFS Embankment With +3" Aggregate is Hard to Process in Place



## **Portland Cement Stabilization**

RAP & CABC and Embankment Stabilization



Absorbs Water
From Existing Soil
Rigid Stabilization,
More Difficult to
Recycle



## **Portland Cement Stabilization**

#### Stabilized Sub-Base (Local Silt) for Bethel Airport





## **Bethel Silt Cement Stabilization**

- Gradation
  - 100% passing the #30 sieve
  - 97% passing the #50 sieve
  - 26% passing the #200 sieve

- Maximum Dry density
  - 109 pcf @ 13.5 % moisture
- Frost Susceptibility



 No plasticity Index but high capacity of moisture and permeability



## **Portland Cement Stabilization**

#### **Soil Cement Base Alternative**

| Pay Item  |                                 |           |             |                |              |
|-----------|---------------------------------|-----------|-------------|----------------|--------------|
| Number    | Pay Item description            | Quantity  | Pay Unit    | Unit Bid Price | Amount Bid   |
| G-100a    | Mobilization and Demobilization | All Req'd | lump sum    | \$260,000.00   | \$260,000.00 |
| P-152a    | Unclassified Excavation         | 80,400    | cubic yard  | \$6.00         | \$482,400.00 |
| P-152h(1) | Borrow Embankment               | 66,500    | cubic yard  | \$7.00         | \$465,500.00 |
| P-152h(2) | Type A Borrow Embankment        | 25,800    | cubic yard  | \$7.30         | \$188,340.00 |
| P-209b    | Crushed Aggregate Base Course   | 800       | ton         | \$55.00        | \$44,000.00  |
| P-301a    | Soil Cement Base Course         | 52,700    | square yard | \$8.60         | \$453,220.00 |
| P-301b    | Portland Cement                 | 1,500     | ton         | \$425.00       | \$637,500.00 |

**Total Basic Alternative Bid =** \$2,530,960.00

#### **Crushed Aggregate Base Alternative**

| Pay Item  |                                 |           |            |                |                |
|-----------|---------------------------------|-----------|------------|----------------|----------------|
| Number    | Pay Item description            | Quantity  | Pay Unit   | Unit Bid Price | Amount Bid     |
| G-100a    | Mobilization and Demobilization | All Req'd | lump sum   | \$350,000.00   | \$350,000.00   |
| P-152a    | Unclassified Excavation         | 85,600    | cubic yard | \$6.00         | \$513,600.00   |
| P-152h(1) | Borrow Embankment               | 64,600    | cubic yard | \$7.00         | \$452,200.00   |
| P-152h(2) | Type A Borrow Embankment        | 25,900    | cubic yard | \$7.30         | \$189,070.00   |
| P-209b    | Crushed Aggregate Base Course   | 35,600    | ton        | \$55.00        | \$1,958,000.00 |

**Total Basic Alternative Bid =** \$3,462,870.00



## **Foamed Asphalt Stabilization**





#### **Foamed Asphalt Train in Homer, Ak**





## **Foamed Asphalt Stabilization**

- Highways: Existing Pavement & Base, 6" Total Depth
- Homer, Seward, Soldotna, Wasilla, Fairbanks, Bethel
- Airports: FDR 15" Existing CABC & Subase
- St. Paul Airport, St. George Airport
- Mine Roads: Stabilize Existing Subbase
- Red Dog Zinc Mine



#### Red Dog Zinc Mine - Tech Cominco Knik Construction Co., 2002





Haul truck: 240 ton ~ 480k lbs, 11 axles
33 trucks/day; 105 psi tire pressure
Traffic volume: 27M ESALs over a 10-year design period





EFFE

5-in crushed rock added
Stabilization depth: 10"
3.0% ± 0.3% foamed asphalt
AC-2.5 at 330°F
2.5% water



# **Foam Asphalt Stabilization**

- Produces Flexible Bound System in One Pass
- Recycles existing materials
- Restores smoothness,
- Eliminates Reflective Cracking In Existing HMA, Upgrade PG of Asphalt Cement in HMA
- Foamed Asphalt Agglomerates Fine Aggregate (Does Not Coat Large Aggregate)
- Increased M<sub>R</sub> From 65 ksi to 110ksi



### **Evaluate Material**

#### Fig 4.11 Suitability of material for foamed bitumen treatment





Fig 4.9 Characteristics of foamed bitumen



Half-life (s)

with unfoarned biturnen



#### **Indirect Tension Test**



Specifications require Field ITS > 85% Lab ITS or Increase HMA Thickness At Contractor's Expense.



## **Foamed Asphalt Stabilization**

- Total Cost of Foaming: Approx \$10/sq.yd. (6" deep)
- Cost of Equal Strength of HMA: Approx. \$20/sq.yd



### **Emulsified Treated Base in SE Alaska**

- Performance- Has been very successful
- Typical Modulus obtained: 100 to 130 KSI
- Cost has varied over 10 year period, typically

Includes mixing, asphalt emulsion & cement powder



### **Construction Issues**

- Placement and grading of mixture, time limited
- Compaction based upon control strip
- Curing
- Placement of final wearing surface, either HMA or BS⊤



## **FDR w/Emulsified Treated Base**







## Deep Compaction with Pad Foot Roller













## Thank You, Questions?